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Abstract—This paper describes the analysis, design, and testing of

a six-port antomatic network analyzer. A new calibration procedure
is derived from a matrix description of the six-port network. The

calibration constants appear as the soIution of an eigenvalue problem
resulting in new insights and faster numerical computation. A
programmable calculator-controlled six-port system was designed to
measure S ~~ and Sz ~ over the frequency range 2–18 GHz without
perturbing tbe device under teat. Measurements on the completed

system taken from 7–12 GHz show that results within 1 percent can

be obtained.

I. INTRODUCTION

T HE NEED FOR wide band, accurate, fast, and inexpen-

sive microwave measurement of S-parameters has been

growing at a rapid rate. Although the computer-controlled

automatic network analyzer satisfies the first three charac-

teristics, it carries a high price tag. Recent work at the

National Bureau of Standards (NBS) [1], [2] on program-

mable calculator-controlled six-port measurement systems

has shown promise in reducing the cost of automated

measurements without sacrificing accuracy. Expanding on

the NBS work, we have critically examined the analytical

basis for the calibration and measurement procedures and

built a prototype six-port automated network analyzer

(SPANA) designed to demonstrate the feasibility of measur-
ing both Szl and S1l from 2–18 GHz.

The main feature of the technique is that a six-port

network, with square-law detectors on the four output ports,

can be calibrated to determine the amplitude and phase of

the ratio of signals at the two input ports. This complex ratio

of input signals is calculated from the six-port network

constants and the output detector voltages. The simplicity of

the microwave detection process reduces the cost of com-

ponents needed for the usual frequency conversion methods,
and permits automation via a programmable calculator-

based system,

The work described in this paper has contributed to the

six-port state-of-the-art in both analysis and hardware

realizations. On a conceptual level the matrix description

has led logically to a new calibration approach. From our
analysis we formulate the calibration equations as an eigen-

value problem; this results in a simpler and faster computer

program. The prototype analyzer has several important

advantages over previous NBS systems. The SPANA com-
bines reflection and insertion loss measurements in one unit

without disturbing the device under test (DUT). The

amount of hardware has been substantially reduced with the

elimination of banks of isolators. A more detailed descrip-
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tion of this investigation is contained in a recently issued

report [3].

II. MATRIX DESCRIPTION OF THE SIX-PORT NETWORK

The measurement potential of a six-port network can best

be appreciated by adopting a scattering matrix description.

Consider the arbitrary six-port network shown in Fig. 1 with

incident scattering variables a, and reflected scattering

variables bi at the two input ports 1 and 2, and output ports

3-6. If each output port/3 is terminated in a power detector

with reflection coefficient rfl, so that a~ = r~ b~, the output

variables bp can be written as a linear combination of two

remaining input variables such as a ~ and az or az and bz.

These four equations can then be written as

6B = Apal + Bpaz = Cpaz + Dobz (1)

where ~B denotes a column vector with entries b ~ The

scalars AD, “””, Dp depend on the actual topology of the six

port, that is the scattering matrix S. Since the net output

power P. at each output port is proportional to I b~ ]2, these

four powers can be written in two alternate matrix forms

F = g;%g F = ~; %q (2)

where ~ is a column matrix of power readings and ii~, ~~ are

column matrices containing certain quadratic functions of

the input variables. Our notation requires some additional

comment. The subscripts I and R are used for insertion loss

and reflection coefficient, respectively. The entries of ~ ~and

Q~ are different as is the topology of the networks used in the

two applications. In addition the tilde denotes a square

matrix; A‘. ~-1 denote the transpose and inverse of matrix

A, respectively. Specifically the entries of ii~ and ~, can be

taken as I al lz, alaj, a~az, \ a, 12.This formulation (which is

used for convenience in the Appendix) requires that the

entries of ~ be complex. Alternately we may define Z*, ~~ as

where QF 1 and Q ~ 1 are 4 x 4 real matrices of unknown

proportionality constants, Equation (2) is a function rule

relating certain input quadratics to the power readings.

These equations completely describe the network properties

we can observe with power meters at the four output ports.

If the matrix C -1 can be inverted, the input quadratics can

be related directly to the power readings yielding

Ziq= glP ;q = ~RF. (4)

The entries of QR and ~1 are the calibration constants of the

two network configurations whose values are deduced

during the calibration procedure. Once the entries Cii of
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nonlinear simultaneous equations can be solved in any

number of ways. NBS has approached this problem by using

‘3 f i ‘3 ‘4~ \a4 %1 @ kjt Ja6 an iterative technique based on a Taylor expansion of (6)

about the correct values for the unknowns C ~i, C ~i, and Lt
When we examined this algorithm certain mathematical and

SIX-PORT NETWORK conceptual difficulties were found which are clarified when

the eigenvalue nature of the equation is recognized.

It is shown in Appendix A (equation (A-7)) that the set of

%~ i% aq @ m equations given in (6) can be embedded in an eigenvalue

Fig 1. An arbitrary network with power meters on four of the six ports.
problem. Specifically we show that

~T-l~T~T = ~T-l[(PPT)- lPP’T]CT = A
.# (7)

matrix ~ are known to within a constant multiplier, a ratio where ~ is a diagonal matrix and W is defined by (7). In
of the input quadratics can be computed from (4) by simply addition we are able to exhibit these eigenvalues explicitly,

measuring the output powers. For example, from (3), we that is Ii, the diagonal elements of & under ideal terminal

obtain conditions, are 1, 1., L*, and I L 12.Corresponding to each

eigenvalue there is an associated eigenvector. The compon-

i (C’2Z-.x3J~i ents of the eigenvector associated with 1 = L contain the
a2 az a? tcl

i’~=
(5) calibration constants used in (5). Herein lies an explanation

,~, C~,Pt
of the occasional failure of the NBS technique. If the initial

guess at the calibration constant is poorly chosen, the NBS

with a similar equation for az /bz.

HI. CALIBRATION PROCEDURE

There are two types of calibration procedures for deter-

mining the entries C ij. For example, standards can be used

to introduce known terminal conditions from which the

calibration constants can be deduced. We have used this

procedure in SI ~ measurements. An exposition of this

method using a matrix description has appeared elsewhere

[4].

Alternatively, there are self-calibration methofis where no

standards are necessary with the obvious advantage that no

recalibration of the standard is required. The self-calibration

technique reported by Hoer [1] for a six-port ratio meter is

directly applicable to the measurement of S2 ~. Although no

standards are required, use is made of a repeatable, but

otherwise unknown, two position insertion device which

inserts a complex attenuation L into one ojf the input

channels. The calibration procedure consists of the follow-

ing steps. With the two position insertion device in its “out”

position, the four output powers are measured. We~enote

the column vector of such power readings as P. This

measurement is repeated for at least m >4 different ratios of
input excitations az /a ~. The resulting power readings are

stored, by columns, in a matrix P. The measurements are

repeated with the insertion device in the “in” position and

the power readings are stored in matrix P’. It is assumed that

the sole influence of the two states of the insertion device is to

change one input channel from, say, a2 to Laz while a 1

remains constant. This procedure yields m equations of the

form

~echnique can converge to either J = 1, L*, or \ L 12,and their

associated eigenvector rather than the eigenvalue of interest

1 = L In addition, since L and L* are complex conjugates,

we must have some means of deciding which eigenvalue and

eigenvector has actually been computed. To put it another

way we must know the sign of L a priori.

The recognition of (7) as an eigenvalue problem has lead

to an entirely different numerical algorithm which requires

far fewer mathematical operations. The execution time is

much faster and the computer storage involved is greatly

reduced. A program using this eigenvalue approach has

been developed and was used with the SPANA for measure-

ments of Szl.

The new technique is based on the observation that since

L represents the value of an attenuator we can identify 1 and

IL 1’ as the maximum and minimum eigenvalues. These can

be found directly from the matrix ~T; that is from the power

measurements, by a simple iterative technique [5]. From the

additional fact that the trace of JJ’r must be equal to the sum

of the eigenvalues, and the determinant of WT must be equal

to the product of the eigenvalues, we can find all the

eigenvalues to within a sign ambiguit y for L and L*. Once the

complete eigenvalue set has been found, the eigenvectors

associated with any of the eigenvalues, say & for example,
can be found by forming the adjoint of (WT – &1). It can be

shown that the eigenvectors associated with 14 can be taken

to be proportional to the nonzero columns of

Adj (kVT – A41). A simple expression for this matrix func-

tion makes this calculation straightforward [6]

Adj (!LVT – A~I) = ~, (~’ – ai~). (8)

4 i+k

~ [C~L ‘jC:)i]Pj
L=aj =aja~*/la\12 = ,=1 Finally we note that the actual calculation uses the

(6) measured data, the entries of W. We thus expect that the
az a2aT/]a112

~ [Cx - .X,,ilpi calculated maximum eigenvalue will be only approximately
,=1

1. In fact the departure of 21 from its ideal value is a measure

where we have used (5) and the restriction a 1 = a’l. These m of our ability to keep [al IZ = \ aj 12.
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Fig. 2. Schematic diagram of SPANA.

IV. SYSTEM DESCRIPTION
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Fig. 4. Sperry six-port microwave network.

.

au RF single-pole double-throw switch S ~ is used to direct

power away from the network and into a matched load.

The Q hybrid Q ~following the switch S ~is used as a 3-dB

dual-directional coupler. The s&nal from the – 9(P port is

connected to the seven-port network as a reference wave-

form. The isolated port wave is an essential part of the

reflectometer network. An insertion point fo,r the DUT is

connected to the (Y port. For S ~~measurements, attenuators

are placed on both sides of the DUT to improve the match.

Various standards for calibrating the reflectometer are also

inserted at this position. A preeision flexible cable is

included for allowing a variety of devices to be connected

between the test ports. The two-position insertion device

used in the self-calibration procedure follows the NBS

design for a component with 3-dB insertion loss and 45°

phase shift. The signal from this device is cormected to one
input of a terminated switch. The isolated port wave from Q ~

serves as the other input. Either the reflected or transmitted

signal can then be selected as one input to the seven-port

junction.

Redirecting attention to Q1, the 90’ output signal

passes through the components used in the self-calibration
procedure before it enters into the other input port of the

seven-port junction. The first is a two-position step attenua-

tor, and the other is a three-position phase shifter of NBS

design.

In the seven-port junction only four output ports are used

at any time. The additional port is available so that different

port combinations may be evaluated for different condi-

tions. The five outputs from the seven-port junction are

terminated in diode detectors with load resistors chosen for

optimum square-law response up to as large an input power

as possible. The five output voltages from the diodes are fed

into a scanner which selects individual voltages for the

digital voltmeter. Other relays in the scanner are used to

open and close the RF switches. For simplicity, the control

lines from the scanner to the switches are not shown. To

allow the calculator to communicate with the instruments

an interface bus system is used. The bus is directly interfaced

to the digital voltmeter and indirectly to the sweeper

through a converter. The scanner is connected directly to the

calculator through an input–output interface.

An overall photograph with the instrument cabinet and

calculator is shown in Fig. 3. In the cabinet from top to

bottom are the DVM, scanner, sweeper, and microwave

rack. Fig. 4 is a close-up view of the microwave networks

with the pertinent subassemblies called out.

V. MEASUREMENT PROCEDURE AND RESULTS

A self-calibration procedure is employed for S2 ~measure-

ments. Under calculator control, sets of diode output vol-

tages are acquired and stored with the two-position

insertion device in each state for each of six possible

combinations of the two-position attenuator and three-

position phase shifter. From these readings, the six-port
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Fig. 5. Six-port insertion loss measurement at 10, 20, 30, and 40 dB.

calibration constants for the Sz ~mode are determined using

an eigenvalue approach. The six-port reflectometer con-

stants are found using four standards at the unknown

terminal: a matched load, a short, and two offset shorts.

Once calibration is complete, the S2 ~ of a DUT is deter-

mined in three steps. First a through measurement without

the DUT is performed. Next, the two output terminals are

connected to matched loads in order to obtain a correction

term for the effect of leakage through the six-port junction.

Then the DUT is connected and measurements taken. The

three sets of four diode voltage measurements are then used

with the calibration constants to compute the unknownS21.

The S1 ~ of the DUT is found by switching internally to the

reflectometer mode and acquiring the four diode voltages.
After all voltages are acquired the calculator computes arid

prints S2 ~ and S1 ~ for each test frequency.

Although the six-port system was designed to cover the

2-18 GHz range, measurements were made only from 6-12

GHz because we did not have access to sweepers outside this

range during the test period. The results of two of the

measurement runs on coaxial attenuators are illustrated in

Fig. 5 with three different sets of data points. One set is the

insertion loss values along with bounds for the maximum

uncertainty as calibrated by NBS. A second set shows the

best six-port data selected from about five runs taken on

different days. Here the criterion for best was the data closest

I , 1 ,
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Q = 0.7346 cm

/

-

1! = 2.498 cm

, , ,
6 7 8 9 10 11 12

FREQUENCY (GHz)

Fig. 6. Deviation from ideal phase values for offset shorts.

to the calibration values. A third set illustrates the scatter for

a more typical run. This data demonstrates the good

agreement between the best run and the calibrated values.

The scatter increased somewhat for 40 dB and was poor at

50 dB.

Fig. 6 shows the measured deviation from ideal phase for

three offsets is within 1° and deteriorates to almost 5° for the

longest one.

VI. DISCUSSION

Measurements on the SPANA from 7-12 GHz have

demonstrated that results within 1 percent can be achieved,

although typical runs give somewhat lesser accuracies.

Clearly, questions on system errors need to be resolved to
explain these differences. A preliminary investigation in-

dicated that mismatch uncertainty due to finite source and

load reflection coefficients was the largest source of attenua-

tion errors. This could be reduced by implementing a

hardware change that would allow measurement of the

reflection coefficients looking into the two ports of the

analyzer. Subsequent software procedures could then be

used to make the necessary corrections. We also later

discovered that a connector on the flexible cable was faulty

during the tests which could account for some of the erratic

results.

An alternate approach, which obviates mismatch correc-
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tions, by using two six-port junctions, one on each side of the

DUT, has been recently proposed by Hoer [7]. Further

progress in developing practical six-port analyzers will

probably be based on multi-six-port systems and will

depend on a greater understanding of their calibration

procedures and error sources.

APPENDIX A

SELF-CALIBRATION EQUATIONS FOR THE SIX PORT

In this Appendix we wish to review the mathematical

basis for viewing the self-calibration procedure as an eigen-

value problem. We showed in (4) that the quadratics

associated with the input excitations are relatecl to the power

meter readings by

Ziq= @ (A-1)

It will simplify the subsequent analysis to use the complex

formulation for the quadratic variables. Thus the entries of

~ are in general complex numbers, and Q is assumed to be

nonsingular. In the NBS self-calibration procedure an inser-

tion device is placed in tandem with port 2. This produces

new incident scattering variables aj and aj with correspond-

ing output power vector ~. Thus a new set of input–output

equations, similar to (A-1), results

If we assume that the insertion device simply changes the

input variable from az to aj = L.uz, and that a ~ remains

constant, a; = al, then we can summarize these terminal

requirements by

2P = lyiq

where

rloool

-1~=,)L* ()()

00L0 I (A-3)

[0 O 0 IL12]

Since (A-1 ) through (A-3) are valid for each of in measure-

ments, we can write the three augmented matrix equations

Aq = QP

A; = ~P’

AL= AA q (A-4)

where Aq, AL, P, P’ are 4 x m matrices whose columns are

the quadratic expressions and corresponding power read-

ings shown explicitly in (A-1) and (A-2). Q and ~ are the
4 x 4 calibration matrix ad a diagonal matrix. Equation

(A-4) can be used to eliminate Aq and A; resulting in the

following matrix relationship,

~P’ = ACP.-- (A-5)

It follows from (A-5) that A is similar to the matrix ~

defined by

The eigenvalues of ~ are thus the diagonal entries of&

Finally since ~ is a diagonal matrix, we find that the

transpose of ~ is

which shows directly that the rows of Q, that is, our desired

calibration constants, are the eigenvec~ors of ~ ~.

To facilitate comparison with Hoer’s notation [1], [2], we

remark that the eigenvector associated with 2 = 1 is simply

the ti vector, the eigenvector associated with A = Lis simply

the 2 vector, and finally the eigenvector associated with

~ = I L 1’ is the 6 vector.
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